Richter L, Sallandt L, Nüsken N (2021). Solving high-dimensional parabolic PDEs using the tensor train format. Proceedings of the 38th International Conference on Machine Learning, PMLR 139, arXiv:2102.11830.

Ahrens I,  Unger B (2021). A simple success check for delay differential-algebraic equations. Proc. Appl. Math. Mech., 20 (1): e202000270.

Ahrens I, Unger B (2020). The Pantelides algorithm for delay differential-algebraic equations. Trans. Math. Appl., 4(1):1-36.

Gühring I, Raslan M (2021). Approximation Rates for Neural Networks with Encodable Weights in Smoothness Spaces. Neural Networks, 134: 107-130.

Wu H, Köhler J, Noé F (2020). Stochastic Normalizing Flows. Conference on Neural Information Processing Systems.

Köhler J, Klein L, Noé F (2020). Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities. International Conference on Machine Learning.

Röhr V, Berner R, Lameu EL, Popovych OV, Yanchuk S (2019). Frequency cluster formation and slow oscillations in neural populations with plasticity. PLOS ONE 14(11): e0225094.

Oster M, Sallandt L, Schneider R (2019). Approximating the Stationary Hamilton-Jacobi-Bellman Equation by Hierarchical Tensor Products. arXiv preprint arXiv:1911.00279, 2019.

Noé F, Olsson S, Köhler J, Wu H (2019). Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 365 (6457), eaaw1147. DOI: 10.1126/science.aaw1147.

Gühring I, Kutyniok G, Petersen P (2019). Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Analysis and Applications 2020 18:05, 803-859