Richter L, Sallandt L, Nüsken N (2021). Solving high-dimensional parabolic PDEs using the tensor train format. Proceedings of the 38th International Conference on Machine Learning, PMLR 139, arXiv:2102.11830.

C. Anders, P. Pasliev, A.-K. Dombrowski, K.-R. Müller, and P. Kessel. Fairwashing explanations with off-manifold detergent. In Proceedings of the 37th International Conference on Machine Learning, ICML, Vienna, Austria, PMLR 119, 2020

I. Ahrens and B. Unger. A simple success check for delay differential-algebraic equations. In Proceedings in Applied Mathematics and Mechanics 2020, volume 20, page e202000270. Wiley, 2021. doi:10.1002/pamm. 202000270

Ahrens I, Unger B (2020). The Pantelides algorithm for delay differential-algebraic equations. Trans. Math. Appl., 4(1):1-36.

Gühring I, Raslan M (2021). Approximation Rates for Neural Networks with Encodable Weights in Smoothness Spaces. Neural Networks, 134: 107-130.

H. Wu, J. Köhler, and F. Noe. Stochastic normalizing flows. In H. Larochelle, M. Ranzato, R. Had-sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 5933–5944. Curran Associates, Inc., 2020. URL: https://proceedings.neurips.cc/paper/2020/file/ 41d80bfc327ef980528426fc810a6d7a-Paper.pdf

Köhler J, Klein L, Noé F (2020). Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities. International Conference on Machine Learning.

Röhr V, Berner R, Lameu EL, Popovych OV, Yanchuk S (2019). Frequency cluster formation and slow oscillations in neural populations with plasticity. PLOS ONE 14(11): e0225094.

Oster M, Sallandt L, Schneider R (2019). Approximating the Stationary Hamilton-Jacobi-Bellman Equation by Hierarchical Tensor Products. arXiv preprint arXiv:1911.00279, 2019.

Noé F, Olsson S, Köhler J, Wu H (2019). Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 365 (6457), eaaw1147. DOI: 10.1126/science.aaw1147.

Gühring I, Kutyniok G, Petersen P (2019). Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Analysis and Applications 2020 18:05, 803-859

Y. Chen, A. Kramer, N. Charron, B. Husic, C. Clementi, and F. Noe. Machine learning implicit solvation for molecular dynamics. The Journal of Chemical Physics, 155(8):084101, 2021. doi:10.1063/5.0059915

A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller, and P. Kessel. Explanations can be manipulated and geometry is to blame. In Advances in Neural Information Processing Systems, pages 13567–13578, 2019

A.-K. Dombrowski, J. E. Gerken, and P. Kessel. Diffeomorphic explanations with normalizing flows. In ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021

A.-K. Dombrowski, C. J. Anders, K.-R. Müller, and P. Kessel. Towards robust explanations for deep neural networks. Pattern Recognition, 121, 2021. doi:10.1016/j.patcog.2021.108194

K. Fackeldey, M. Oster, L. Sallandt, and R. Schneider. Approximative policy iteration for exit time feedback control problems driven by stochastic differential equations using tensor train format. SIAM Multiscale Modeling & Simulation, 20(1):379–403, 2022. doi:10.1137/20M1372500

A. Kovárnová, P. Krah, J. Reiss, and M. Isoz. Shifted proper orthogonal decomposition and artificial neural networks for time-continuous reduced order models of transport-dominated systems. In Topical Problems of Fluid Mechanics 2022, 2022. doi:10.14311/TPFM.2022.016

P. Krah, T. Engels, K. Schneider, and J. Reiss. Wavelet adaptive proper orthogonal decomposition for large scale flow data. Advances in Computational Mathematics, 48(10), 2020. doi:10.1007/s10444-021-09922-2

P. Krah, M. Sroka, and J. Reiss. Model order reduction of combustion processes with complex front dynamics. In Numerical Mathematics and Advanced Applications ENUMATH 2019, pages 803–811. Springer, 2021. doi:10.1007/978-3-030-55874-1_79

J. Köhler, A. Krämer, and F. Noé. Smooth normalizing flows. Advances in Neural Information Processing Systems, 2021

M. Oster, L. Sallandt, and R. Schneider. Approximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formats. SIAM Journal on Scientific Computing. Accepted. arXiv:2104.06108

P. Schwarz, M. Lemke, and J. Sesterhenn. Adjoint-based data assimilation for a compressible jet using PIV. In 13th International Symposium on Particle Image Velocimetry ISPIV 2019, Munich, Germany, July 22–24, pages 1066–1073, 2019. doi:10.18726/2019_3

M. Seleznova and G. Kutyniok. Analyzing finite neural networks: Can we trust neural tangent kernel theory? In Proceedings of the 2nd Annual Conference on Mathematical and Scientific Machine Learning, MSML, volume 145 of Proceedings of Machine Learning Research, pages 1–28. PMLR, 2021. URL: https://msml21.github.io/ papers/id44.pdf

M. Seleznova, B. Omidvar-Tehrani, S. Amer-Yahia, and E. Simon. Guided exploration of user groups. In Proceedings of 47th International Conference on Very Large Data Bases, VLDB, volume 13 of Proceedings of the VLDB Endowment (PVLDB), pages 1469–1482, 2020. doi:10.14778/3397230.3397242

P. Schwerdtner and M. Voigt. Adaptive sampling for structure preserving model order reduction of port-Hamiltonian systems, 2021. arXiv:2106.11366

C. Bayer, M. Eigel, L. Sallandt, and P. Trunschke. Pricing high-dimensional Bermudan options with hierarchical tensor formats, 2021. arXiv:2103.01934

B. Beck and W.-C. Müller. Port-Hamiltonian inspired gradient diffusion model for magnetohydrodynamic turbulence. doi:10.48550/arXiv.2203.11536

A.-K. Dombrowski, K.-R. Müller, and W.-C. Müller. Automated dissipation control for turbulence simulation with shell models, 2022. arXiv:2201.02485

I. Gühring, M. Raslan, and G. Kutyniok. Expressivity of deep neural networks, 2020. To appear as a book chapter in ‘Theory of Deep Learning’, Cambridge University Press. arXiv:2007.04759

F. Harder, J. Köhler, M. Welling, and M. Park. Dp-mac: The differentially private method of auxiliary coordinates for deep learning, 2019. arXiv:1910.06924

N. Harmening, M. Klug, K. Gramann, and D. Miklody. HArtMuT – Modeling eye and muscle contributors in neuroelectric imaging, Mar. 2022. doi:10.5281/zenodo.6393098

P. Krah, S. Büchholz, M. Häringer, and J. Reiss. Front transport reduction for complex moving fronts. 2022. arXiv:2202.08208

Krah, M. Goldack, T. Engels, K. Schneider, and J. Reiss. Data-driven reduced order modeling for flows with moving geometries using shifted POD, 2022. 10th Vienna International Conference on Mathematical Modelling (MATHMOD 2022)

A. Krämer, J. Köhler, and F. Noé. Training invertible linear layers through rank-one perturbations, 2020. arXiv:2010.07033

S. A. Meldgaard, J. Köhler, H. L. Mortensen, M.-P. V. Christiansen, F. Noé, and B. Hammer. Generating stable molecules using imitation and reinforcement learning, 2021. arXiv:2107.05007

S. Sadhukhan, R. Samuel, F. Plunian, R. Stepanov, R. Samtaney, and M. Verma. Enstrophy transfers in helical turbulence. Physical Review Fluids, 4, 2019

H. Sallandt, P. Krah, and M. Lemke. Supervised learning for multi zone sound field reproduction under harsh environmental conditions, 2021. arXiv:2112.07349

P. Stornati, D. Banerjee, K. Jansen, and P. Krah. Phases at finite winding number of an abelian lattice gauge theory. In The 38th International Symposium on Lattice Field Theory, 2021. arXiv:2111.09364

J. Wang, J. Sesterhenn, and W.-C. Müller. Coherent structure detection and the inverse cascade of two-dimensional Navier-Stokes turbulence, 2022. doi:10.48550/arXiv.2203.11336

O. Zlatov and B. Blankertz. Towards physiology-informed data augmentation for EEG-based BCIs, 2022. doi:10.48550/ARXIV.2203.14392

R. S. Beddig, P. Benner, I. Dorschky, T. Reis, P. Schwerdtner, M. Voigt, and S. W. Werner. Model reduction for second-order dynamical systems revisited. PAMM, 19(1):e201900224, 2019

S. A. Bortoff, P. Schwerdtner, C. Danielson, and S. Di Cairano. H-infinity loop-shaped model predictive control with heat pump application. In 2019 18th European Control Conference (ECC), pages 2386–2393. IEEE, 2019

M. W. H. Böse, D. Hildebrand, F. Beuer, C. Wesemann, P. Schwerdtner, S. Pieralli, and B. C. Spies. Clinical outcomes of root-analogue implants restored with single crowns or fixed dental prostheses: A retrospective case series. Journal of Clinical Medicine, 9(8):2346, 2020

K. Fackeldey, M. Oster, L. Sallandt, and R. Schneider. Approximative policy iteration for exit time feedback control problems driven by stochastic differential equations using tensor train format, 2022. doi:10.1137/20M1372500

A. Goeßmann, I. Roth, G. Kutyniok, M. Götte, R. Sweke, and J. Eisert. Tensor network approaches for data-driven identification of non-linear dynamical laws. In Advances in Neural Information Processing Systems – First Workshop on Quantum Tensor Networks in Machine Learning, page 21, 2020

V. Röhr, R. Berner, E. L. Lameu, O. V. Popovych, and S. Yanchuk. Frequency cluster formation and slow oscillations in neural populations with plasticity. PLoS One, 14(11), 2019. doi:10.1371/journal.pone.0225094

P. Schwerdtner, S. A. Bortoff, C. Danielson, and S. Di Cairano. Projection-based anti-windup for multivariable control with heat pump application. In 2019 18th European Control Conference (ECC), pages 1281–1287. IEEE, 2019

P. Schwerdtner, E. Mengi, and M. Voigt. Certifying global optimality for the L1-norm computation of large-scale descriptor systems. IFAC-PapersOnLine, 53(2):4279–4284, 2020

P. Schwerdtner and M. Voigt. Computation of the L1-norm using rational interpolation. IFAC-PapersOnLine, 51(25):84–89, 2018

R. S. Beddig, P. Benner, I. Dorschky, T. Reis, P. Schwerdtner, M. Voigt, and S. W. Werner. Structure-preserving model reduction for dissipative mechanical systems, 2020. arXiv:2010.06331

A. Goeßmann and G. Kutyniok. The restricted isometry of ReLU networks: Generalization through norm concentration, July 2020. arXiv:2007.00479

P. Schwerdtner. Port-Hamiltonian system identification from noisy frequency response data, 2021. arXiv: 2106.11355

P. Schwerdtner, F. Greßner, N. Kapoor, F. Assion, R. Sass, W. Günther, F. Hüger, and P. Schlicht. Risk assessment for machine learning models, 2020. arXiv:2011.04328

P. Schwerdtner and M. Voigt. Structure preserving model order reduction by parameter optimization, 2020. arXiv:2011.07567